In [1]:
data <- read.table("/media/igna/Elements/HotelDieu/Cochrane/MappingRCTs_vs_Burden/database_RCTs_regions_27diseases.txt")
nrow(data)
In [2]:
data$Sample[data$Sample<10 | data$Sample>200000] <- NA
table(is.na(data$Sample))
sum(data$Sample,na.rm = TRUE)
In [2]:
library(data.table)
In [38]:
options(repr.plot.width=9, repr.plot.height=9)
par(mfrow=c(5,5),mar=c(1,1,3,1))
DF <- fread(paste(c("/media/igna/Elements/HotelDieu/Cochrane/MappingRCTs_vs_Burden/Replicates/Metrics_over_repl/Metrics_over_replicates_",
as.character(d),".txt"),collapse=""))
hist(DF$RCTs[DF$Reg=="All"],xlim=c(70000,90000),xlab=NULL,main="all")
for(i in 1:length(sms)){
DF <- fread(paste(c("/media/igna/Elements/HotelDieu/Cochrane/MappingRCTs_vs_Burden/Replicates/Metrics_over_repl/",
sms[i]),collapse=""))
hist(DF$RCTs[DF$Reg=="All" & DF$Dis=="all"],
xlim=c(70000,90000),xlab=NULL,
main=substr(sms[i],25,nchar(sms[i])-4))
}
In [39]:
Mgbd <- read.table("../Data/27_gbd_groups.txt")
In [42]:
Mgbd$x[12]
In [43]:
PERF <- read.csv('../Tables/Performances_per_27disease_data.csv')
In [45]:
PERF[12,]
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
dprp <- DF[DF$Dis=="dis",c("RCTs","Patients")]/DF[DF$Dis=="all",c("RCTs","Patients")]
dprp$Reg <- DF$Region[DF$Dis=="dis"]
tapply(dprp$RCTs,dprp$Reg,function(x){100*quantile(x,probs=c(0.025,0.5,0.975))})
tapply(dprp$Patients,dprp$Reg,function(x){100*quantile(x,probs=c(0.025,0.5,0.975))})
DF[,quantile(.SD,probs=c(0.025,0.5,0.975)),by=.(Dis,Region),.SDcols=c("RCTs","Patients")]
tapply(DF$RCTs[DF$Dis=="dis"],DF$Reg[DF$Dis=="dis"],function(x){quantile(x,probs=c(0.025,0.5,0.975))})
In [ ]:
In [ ]:
In [ ]:
regs <- strsplit(as.character(data$Regions),"&")
DRY <- do.call('cbind',tapply(regs,data$year,function(x){table(unlist(x))}))
DRY <- DRY[order(apply(DRY,1,sum)),]
barplot(DRY[rownames(DRY)!="High-income",])